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1.    Introduction 

1.1. Research Objectives 

As part of this research program we proposed the development of an energy-based thermo- 

dynamic stabilization framework for hybrid control design of large-scale aerospace systems. 

In particular, we concentrate on hybrid control, hierarchical control, impulsive dynamical 

systems, nonnegative dynamical systems, compartmental systems, large-scale systems, non- 

linear switching control, cooperative control, and adaptive control. Application areas include 

large flexible interconnected space structures, spacecraft stabilization, cooperative control of 

unmanned air vehicles, network systems, swarms of air and space vehicle formations, and 

pharmacological systems. 

1.2. Overview of Research 

Controls research by the Principal Investigator [1-74] has concentrated on an energy- 

based thermodynamic stabilization framework for hybrid control design of large-scale aero- 

space systems. This framework provides a rigorous foundation for developing a unified 

energy-based (network thermodynamic) analysis and synthesis methodology for large-scale 

aerospace systems possessing hybrid, hierarchical, and feedback structures. This framework 

additionally provides a rigorous alternative to designing gain scheduled controllers for gen- 

eral nonlinear dynamical systems by constructing minimal complexity logic-based nonlinear 

controllers consisting of a number of subcontrollers situated in levels (protocol layers of hier- 

archies) such that each subcontroller can coordinate lower-level controllers. Correspondingly, 

one of the main goal of this research has been to make progress towards the development 

of analysis and hierarchical hybrid nonlinear control law tools for nonlinear large-scale dy- 

namical systems. This framework provides the basis for developing control-system parti- 

tioning/embedding using concepts of energy-based thermodynamic hybrid stabilization for 

complex, large-scale aerospace systems. 

A thermodynamic stabilization framework for Eulerian swarm models is also developed. 

Specifically, we present a distributed boundary controller architecture involving the exchange 

of information between uniformly distributed swarms that guarantee that the closed-loop 

system is consistent with basic thermodynamic principles. Robustness of individual agent 

failures and unplanned individual agent behavior is also addressed. In addition, a general 

framework for designing semistable protocols in dynamical networks with switching topolo- 

gies is also developed. Specifically, we develop a distributed nonlinear controller architecture 



for inultiagent network consensus with time-dependent and state-dependent communication 

topologies. Correspondingly, the main goal of this research over the past year has been to 

make progress towards the development of analysis and control for nonlinear multi-agent 

systems. 

1.3.     Goals of this Report 

The main goal of this report is to summarize the progress achieved under the program 

during the past three years. Since most of the technical results appeared or will soon appear 

in over 74 archival journal and conference publications, we shall only summarize these results 

and remark on their significance and interrelationship. 

2.    Description of Work Accomplished 

The following partial research accomplishments have been completed over the past three 

years. 

2.1.     Hybrid Decentralized Maximum Entropy Control for Large- 
Scale Dynamical Systems 

Modern complex dynamical systems1 are highly interconnected and mutually interdepen- 

dent, both physically and through a multitude of information and communication network 

constraints. The sheer size (i.e., dimensionality) and complexity of these large-scale dy- 

namical systems often necessitates a decentralized architecture for analyzing and controlling 

these systems. Specifically, in the control-system design of complex large-scale dynamical 

systems it is often desirable to treat the overall system as a collection of interconnected 

subsystems. The behavior of the composite (i.e., large-scale) system can then be predicted 

from the behaviors of the individual subsystems and their interconnections. The need for 

decentralized control design of large-scale systems is a direct consequence of the physical size 

and complexity of the dynamical model. In particular, computational complexity may be 

too large for model analysis while severe constraints on communication links between system 

sensors, actuators, and processors may render centralized control architectures impractical. 

Moreover, even when communication constraints do not exist, decentralized processing may 

be more economical. 

'Here we have in mind large flexible space structures, aerospace systems, electric power systems, network 
systems, economic systems, and ecological systems, to cite but a few examples. 



The complexity of modern controlled large-scale dynamical systems is further exacer- 

bated by the use of hierarchial embedded control subsystems within the feedback control 

system; that is, abstract decision-making units performing logical checks that identity sys- 

tem mode operation and specify the continuous-variable subcontroller to be activated. Such 

systems typically possess a multiechelon hierarchical hybrid decentralized control architec- 

ture characterized by continuous-time dynamics at the lower levels of the hierarchy and 

discrete-time dynamics at the higher levels of the hierarchy. The lower-level units directly 

interact with the dynamical system to be controlled while the higher-level units receive infor- 

mation from the lower-level units as inputs and provide (possibly discrete) output commands 

which serve to coordinate and reconcile the (sometimes competing) actions of the lower-level 

units. The hierarchical controller organization reduces processor cost and controller com- 

plexity by breaking up the processing task into relatively small pieces and decomposing the 

fast and slow control functions. Typically, the higher-level units perform logical checks that 

determine system mode operation, while the lower-level units execute continuous-variable 

commands for a given system mode of operation. 

Since implementation constraints, cost, and reliability considerations often require de- 

centralized controller architectures for controlling large-scale systems, decentralized control 

has received considerable attention in the literature. A straightforward decentralized control 

design technique is that of sequential optimization, wherein a sequential centralized subcon- 

troller design procedure is applied to an augmented closed-loop plant composed of the actual 

plant and the remaining subcontrollers. Clearly, a key difficulty with decentralized control 

predicated on sequential optimization is that of dimensionality. An alternative approach to 

sequential optimization for decentralized control is based on subsystem decomposition with 

centralized design procedures applied to the individual subsystems of the large-scale system. 

Decomposition techniques exploit subsystem interconnection data and in many cases, such 

as in the presence of very high system dimensionality, is absolutely essential for designing 

decentralized controllers. 

In this research [6], we develop a novel energy-based hybrid decentralized control frame- 

work for lossless and dissipative large-scale dynamical systems based on subsystem decompo- 

sition. The notion of energy here refers to abstract energy notions for which a physical system 

energy interpretation is not necessary. These dynamical systems cover a very broad spec- 

trum of applications including aerospace systems, fluid systems, electromechanical systems, 

electrical systems, combustion systems, structural vibration systems, biological systems, 

physiological systems, power systems, telecommunications systems, and economic systems, 

to cite but a few examples. The concept of an energy-based hybrid decentralized controller 

can be viewed as a feedback control technique that exploits the coupling between a physi- 



cal large-scale dynamical system and an energy-based decentralized controller to efficiently 

remove energy from the physical large-scale system. Specifically, if a dissipative or lossless 

large-scale system is at high energy level, and a lossless feedback decentralized controller 

at a low energy level is attached to it, then subsystem energy will generally tend to flow 

from each subsystem into the corresponding subcontroller, decreasing the subsystem energy 

and increasing the subcontroller energy [1]. Of course, emulated energy, and not physical 

energy, is accumulated by each subcontroller. Conversely, if each attached subcontroller is 

at a high energy level and the corresponding subsystem is at a low energy level, then energy 

can flow from each subcontroller to each corresponding subsystem, since each subcontroller 

can generate real, physical energy to effect the required energy flow. Hence, if and when 

the subcontroller states coincide with a high emulated energy level, then we can reset these 

states to remove the emulated energy so that the emulated energy is not returned to the 

plant. In this case, the overall closed-loop system consisting of the plant and the controller 

possesses discontinuous flows since it combines logical switchings with continuous dynamics, 

leading to impulsive differential equations [1]. 

2.2.     Control Vector Lyapunov Functions for Large-Scale Hybrid 
Dynamical Systems 

In this research [5], we provide generalizations to the recent extensions of vector Lyapunov 

theory for continuous-time systems [2] to address stability and control design of impulsive 

dynamical systems via vector Lyapunov functions. Vector Lyapunov theory has been devel- 

oped to weaken the hypothesis of standard Lyapunov theory in order to enlarge the class 

of Lyapunov functions that can be used for analyzing system stability. Lyapunov methods 

have also been used by control system designers to obtain stabilizing feedback controllers 

for nonlinear systems. In particular, for smooth feedback, Lyapunov-based methods were 

inspired by Jurdjevic and Quinn who give sufficient conditions for smooth stabilization based 

on the ability of constructing a Lyapunov function for the closed-loop system. More recently 

Artstein introduced the notion of a control Lyapunov function whose existence guarantees a 

feedback control law which globally stabilizes a nonlinear dynamical system. Even though 

for certain classes of nonlinear dynamical systems a universal construction of a feedback 

stabilizer can be obtained using control Lyapunov functions, there does not exist a uni- 

fied procedure for finding a Lyapunov function candidate that will stabilize the closed-loop 

system for general nonlinear systems. 

In an attempt to simplify the construction of Lyapunov functions for the analysis and 

control design of nonlinear dynamical systems, several researchers have resorted to vector 



Lyapunov functions as an alternative to scalar Lyapunov functions. Vector Lyapunov func- 

tions were first introduced by Bellman and Matrosov, and are ideal for analyzing large-scale 

systems [1,2,5]. The use of vector Lyapunov functions in dynamical system theory offers a 

very flexible framework since each component of the vector Lyapunov function can satisfy 

less rigid requirements as compared to a single scalar Lyapunov function. Weakening the 

hypothesis on the Lyapunov function enlarges the class of Lyapunov functions that can be 

used for analyzing system stability. In particular, each component of a vector Lyapunov 

function need not be positive definite with a negative or even negative-semidefmite deriva- 

tive. Alternatively, the time derivative of the vector Lyapunov function need only satisfy an 

clcment-by-element inequality involving a vector field of a certain comparison system. Since 

in this case the stability properties of the comparison system imply the stability properties 

of the dynamical system, the use of vector Lyapunov theory can significantly reduce the 

complexity (i.e., dimensionality) of the dynamical system being analyzed. 

The results of this research [5] build on those of [2] and include a generalized compari- 

son principle involving hybrid comparison dynamics that are dependent on the comparison 

system states as well as the nonlinear impulsive dynamical system states. Next, we develop 

stability theorems based on hybrid comparison inequalities as well as partial stability re- 

sults for impulsive systems using vector Lyapunov functions. Furthermore, we extend the 

newly developed notion of control vector Lyapunov functions presented in [2] to impulsive 

dynamical systems and show that in the case of a scalar comparison system the definition 

of a control vector Lyapunov function collapses into a combination of the classical definition 

of a control Lyapunov function for continuous-time dynamical systems and the definition of 

a control Lyapunov function for discrete-time dynamical systems. In addition, using control 

vector Lyapunov functions, we present a universal hybrid decentralized feedback stabilizer 

for a decentralized affine in the control nonlinear impulsive dynamical system with guaran- 

teed gain and sector margins. These results are then used to develop hybrid decentralized 

controllers for large-scale impulsive dynamical systems with robustness guarantees against 

full modeling and input uncertainty. 

2.3.     Consensus and Semistability in Network Dynamical Systems 
with Arbitrary Time-Delays 

As discussed in Section 2.1, modern complex dynamical systems are highly interconnected 

and mutually interdependent, both physically and through a multitude of information and 

communication networks. By properly formulating these systems in terms of subsystem in- 

teraction involving energy/mass transfer, the dynamical models of many of these systems 



can be derived from mass, energy, and information balance considerations that involve dy- 

namic states whose values are nonnegative. Hence, it follows from physical considerations 

that the state trajectory of such systems remains in the nonnegative orthant of the state 

space for nonnegative initial conditions. Such systems are commonly referred to as nonneg- 

ative dynamical systems in the literature. A subclass of nonnegative dynamical systems are 

compartmental systems. Compartmental systems involve dynamical models that are char- 

acterized by conservation laws (e.g., mass and energy) capturing the exchange of material 

between coupled macroscopic subsystems known as compartments. Each compartment is 

assumed to be kinetically homogeneous, that is, any material entering the compartment is 

instantaneously mixed with the material of the compartment. The range of applications 

of nonnegative systems and compartmental systems includes biological and physiological 

systems, chemical reaction systems, queuing systems, large-scale systems, stochastic sys- 

tems (whose state variables represent probabilities), ecological systems, economic systems, 

demographic systems, telecommunications systems, transportation systems, power systems, 

t hermodynamic systems, and structural vibration systems, to cite but a few examples. 

A key physical limitation of compartmental systems is that transfers between compart- 

ments are not instantaneous and realistic models for capturing the dynamics of such systems 

should account for material, energy, or information in transit between compartments. Hence, 

to accurately describe the evolution of the aforementioned systems, it is necessary to include 

in any mathematical model of the system dynamics some information of the past system 

states. In this case, the state of the system at a given time involves a piece of trajectories 

in the space of continuous functions defined on an interval in the nonnegative orthant of the 

state space. This of course leads to (infinite-dimensional) delay dynamical systems. 

Nonnegative and compartmental models are also widespread in agreement problems in 

networks with directed graphs and switching topologies. Specifically, distributed decision- 

making for coordination of networks of dynamic agents involving information flow can be 

naturally captured by compartmental models. These dynamical network systems cover a very 

broad spectrum of applications including cooperative control of unmanned air vehicles, dis- 

tributed sensor networks, swarms of air and space vehicle formations, and congestion control 

in communication networks. In many applications involving multiagent systems, groups of 

agents are required to agree on certain quantities of interest. In particular, it is important to 

develop consensus protocols for networks of dynamic agents with directed information flow, 

switching network topologies, and possible system time-delays. In this research [13], we use 

compartmental dynamical system models to characterize dynamic algorithms for linear and 

nonlinear networks of dynamic agents in the presence of inter-agent communication delays 

that possess a continuum of semistable equilibria, that is, protocol algorithms that guaran- 



tee convergence to Lyapunov stable equilibria. In addition, we show that the steady-state 

distribution of the dynamic network is uniform, leading to system state equipartitioning or 

consensus. These results extend the results in the literature on consensus protocols for linear 

balanced networks to linear and nonlinear unbalanced networks with switching topologies 

and time-delays. 

2.4.    Finite-Time Semistable Consensus Protocols for Dynamical 
Networks 

In recent research [19] a unified stability analysis framework for systems having a con- 

tinuum of equilibria was developed. Since every neighborhood of a nonisolated equilibrium 

contains another equilibrium, a nonisolated equilibrium cannot be asymptotically stable. 

Hence, asymptotic stability is not the appropriate notion of stability for systems having a 

continuum of equilibria. Two notions that are of particular relevance to such systems are 

convergence and semistability. Convergence is the property whereby every system solution 

converges to a limit point that may depend on the system initial condition. Semistability 

is the additional requirement that all solutions converge to limit points that are Lyapunov 

stable. Semistability thus implies Lyapunov stability, and is implied by asymptotic stability. 

The dependence of the limiting state on the initial state is seen in numerous dynamical 

systems including compartmental systems which arise in chemical kinetics, and biomedical, 

environmental, economic, power, and thermodynamic systems [10]. For these systems, every 

trajectory that starts in a neighborhood of a Lyapunov stable equilibrium converges to a 

(possibly different) Lyapunov stable equilibrium, and hence, these systems are semistable. In 

addition to semistability, it is desirable that a dynamical system that exhibits semistability 

also possesses the property that trajectories that converge to a Lyapunov stable system state 

must do so in finite time rather than merely asymptotically. 

In this research [19], we merge the theories of semistability and finite-time stability to 

develop a rigorous framework for finite-time semistability. In particular, finite-time semista- 

bility for a continuum of equilibria of continuous autonomous systems is established. Con- 

tinuity of the settling-time function as well as Lyapunov and converse Lyapunov theorems 

for semistability are also developed. In addition, necessary and sufficient conditions for 

finite-time semistability of homogeneous systems are addressed by exploiting the fact that a 

homogeneous system is finite-time semistable if and only if it is semistable and has a negative 

degree of homogeneity. 

Next, we use these results to develop a general framework for designing semistable pro- 

tocols in dynamical networks for achieving coordination tasks in finite time.   Distributed 



decision-making for coordination of networks of dynamic agents involving information flow 

can be naturally captured by graph-theoretic notions. These dynamical network systems 

cover a very broad spectrum of applications including cooperative control of unmanned air 

vehicles (UAV's), autonomous underwater vehicles (AUV's), distributed sensor networks, 

air and ground transportation systems, swarms of air and space vehicle formations, and 

congestion control in communication networks, to cite but a few examples. Hence, it is 

not surprising that a considerable research effort has been devoted to control of networks 

and control over networks in recent years. However, finite-time coordination has not been 

addressed in the literature. 

In many applications involving multiagent systems, groups of agents are required to agree 

on certain quantities of interest. In particular, it is important to develop information con- 

sensus protocols for networks of dynamic agents wherein a unique feature of the closed-loop 

dynamics under any control algorithm that achieves consensus in a dynamical network is the 

existence of a continuum of equilibria representing a state of consensus. Under such dynam- 

ics, the limiting consensus state achieved is not determined completely by the dynamics, but 

depends on the initial system state. Hence, using the results on finite-time semistability, we 

develop a unified framework for addressing the consensus problem in networks of agents in 

finite time. Specifically, we develop nonlinear finite-time controllers using undirected and 

directed graphs to accommodate for a full range of possible graph information topologies 

without limitations of bidirectional communication. 

2.5.     Continuous and Hybrid Distributed Control for Multiagent 
Coordination: Consensus, Flocking, and Cyclic Pursuit 

Modern complex dynamical systems are highly interconnected and mutually interdepen- 

dent, both physically and through a multitude of information and communication networks. 

Distributed decision-making for coordination of networks of dynamic agents involving in- 

formation flow can be naturally captured by graph-theoretic notions. These dynamical 

network systems cover a very broad spectrum of applications including cooperative control 

of unmanned air vehicles (UAV's), autonomous underwater vehicles (AUV's), distributed 

sensor networks, air and ground transportation systems, swarms of air and space vehicle 

formations, and congestion control in communication networks, to cite but a few examples. 

A key application area within aerospace systems is cooperative control of vehicle forma- 

tions using distributed and decentralized controller architectures. Distributed control refers 

to a control architecture wherein the control is distributed via multiple computational units 

that are interconnected through information and communication networks, whereas decen- 



tralized control refers to a control architecture wherein local decisions are based only on local 

information. Vehicle formations are typically dynamically decoupled, that is, the motion of 

a given agent or vehicle does not directly affect the motion of the other agents or vehicles. 

The multiagent system is coupled via the task which the agents or vehicles are required to 

perform. 

In many applications involving multiagent systems, groups of agents are required to agree 

on certain quantities of interest. In particular, it is important to develop information con- 

sensus protocols for networks of dynamic agents wherein a unique feature of the closed-loop 

dynamics under any control algorithm that achieves consensus is the existence of a continuum 

of equilibria representing a state of equipartitioning or consensus. Under such dynamics, the 

limiting consensus state achieved is not determined completely by the dynamics, but depends 

on the initial system state as well. As discussed in Section 2.4, for such systems possessing 

a continuum of equilibria, semistability, and not asymptotic stability, is the relevant notion 

of stability. Semistability is the property whereby every trajectory that starts in a neighbor- 

hood of a Lyapunov stable equilibrium converges to a (possibly different) Lyapunov stable 

equilibrium. 

Alternatively, in other applications of multiagent systems, groups of agents are required to 

achieve and maintain a prescribed geometric shape. This formation problem includes flocking 

and cyclic pursuit, wherein parallel and circular formations of vehicles are sought. For 

formation control of multiple vehicles, cohesion, separation, and alignment constraints are 

typically required for individual agent steering which describe how a given vehicle maneuvers 

based on the positions and velocities of nearby agents. Specifically, cohesion refers to a 

steering rule wherein a given vehicle attempts to move toward the average position of local 

vehicles, separation refers to collision avoidance with nearby vehicles, while alignment refers 

to velocity matching with nearby vehicles. 

Using graph-theoretic notions, in this research [17,58] we develop a unified framework 

for addressing consensus, flocking, and cyclic pursuit problems for multiagent dynamical 

systems. Specifically, we present continuous and hybrid distributed and decentralized con- 

troller architectures for multiagent coordination. In contrast to virtually all of the existing 

results in the literature on control of networks, the majority of the proposed controllers are 

dynamic compensators. The proposed controller architectures are predicated on the recently 

developed notion of system thermodynamics [10] resulting in thermodynamically consistent 

continuous and hybrid controller architectures involving the exchange of information be- 

tween agents that guarantee that the closed-loop dynamical network is consistent with basic 

thermodynamic principles.  Another unique feature of our framework is that several of the 



proposed controller architectures are hybrid, and hence, the overall closed-loop dynamics 

under these controller algorithms achieving consensus, flocking, or cyclic pursuit possesses 

discontinuous flows since they combine logical switchings with continuous dynamics, leading 

to impulsive differential equations [l]. The proposed controllers use undirected and directed 

graphs to accommodate for a full range of possible graph information topologies without 

limitations of bidirectional communication. 

2.6.    Robust Control Algorithms for Network Consensus Protocols 
with Uncertain Communication Graph Topologies 

Due to advances in embedded computational resources over the last several years, a 

considerable research effort has been devoted to the control of networks and control over 

networks. Network systems involve distributed decision-making for coordination of networks 

of dynamic agents involving information flow enabling enhanced operational effectiveness 

via cooperative control in autonomous systems. These dynamical network systems cover a 

very broad spectrum of applications including cooperative control of unmanned air vehicles 

(UAV's) and autonomous underwater vehicles (AUV's) for combat, surveillance, and recon- 

naissance; distributed reconfigurable sensor networks for managing power levels of wireless 

networks; air and ground transportation systems for air traffic control and payload transport 

and traffic management; swarms of air and space vehicle formations for command and con- 

trol between heterogeneous air and space vehicles; and congestion control in communication 

networks for routing the flow of information through a network. 

To enable the applications for these multiagent systems, cooperative control tasks such 

as formation control, rendezvous, flocking, cyclic pursuit, cohesion, separation, alignment, 

and consensus need to be developed. To realize these tasks, individual agents need to share 

information of the system objectives as well as the dynamical network. In particular, in many 

applications involving multiagent systems, groups of agents are required to agree on certain 

quantities of interest. Information consensus over dynamic information-exchange topologies 

guarantees agreement between agents for a given coordination task. Distributed consensus 

algorithms involve neighbor-to-neighbor interaction between agents wherein agents update 

their information state based on the information states of the neighboring agents. A unique 

feature of the closed-loop dynamics under any control algorithm that achieves consensus in 

a dynamical network is the existence of a continuum of equilibria representing a state of 

consensus. Under such dynamics, the limiting consensus state achieved is not determined 

completely by the dynamics, but depends on the initial state as well. As discussed in 

Section 2.4, in systems possessing a continuum of equilibria, semistability, and not asymptotic 
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stability is the relevant notion of stability. 

Even though many consensus protocol algorithms have been developed over the last sev- 

eral years in the literature, robustness properties of these algorithms have been ignored. 

Robustness here refers to sensitivity of the control algorithm achieving semistability and 

consensus in the face of communication uncertainty and communication dropouts. In this 

research [30], we build on the results of [17,19] to develop robust control algorithms for net- 

work consensus protocols with uncertain communication topologies of a specified structure. 

In particular, we construct homogeneous control protocol functions that scale in a consistent 

fashion with respect to a scaling operation on an underlying space with the additional prop- 

erty that the protocol functions can be written as a sum of functions, each homogeneous 

with respect to a fixed scaling operation, that retain system semistability and consensus. 

2.7.     Finite-Time Stabilization of Large-Scale Nonlinear Dynami- 
cal Systems 

The notions of asymptotic and exponential stability in dynamical systems theory imply 

convergence of the system trajectories to an equilibrium state over the infinite horizon. In 

many applications, however, it is desirable that a dynamical system possesses the property 

that trajectories that converge to a Lyapunov stable equilibrium state must do so in finite 

time rather than merely asymptotically. Most of the existing control techniques in the 

literature ensure that the closed-loop system dynamics of a controlled system are Lipschitz 

continuous, which implies uniqueness of system solutions in forward and backward times. 

Hence, convergence to an equilibrium state is achieved over an infinite time interval. In 

order to achieve convergence in finite time, the closed-loop system dynamics need to be 

non-Lipschitzian giving rise to non-uniqueness of solutions in backward time. Uniqueness of 

solutions in forward time, however, can be preserved in the case of finite-time convergence. 

In this research [20], we develop a general framework for finite-time stability analysis of 

nonlinear dynamical systems using vector Lyapunov functions. Specifically, we construct a 

vector comparison system that is finite-time stable and, using the vector comparison prin- 

ciple [2], relate this finite-time stability property to the stability properties of the nonlinear 

dynamical system. Furthermore, we design universal finite-time stabilizing decentralized 

controllers for large-scale dynamical systems based on the newly proposed notion of a con- 

trol vector- Lyapunov function [2], In addition, we present necessary and sufficient conditions 

for continuity of such controllers. Moreover, we specialize these results to the case of a scalar 

Lyapunov function to obtain universal finite-time stabilizers for nonlinear systems that are 

affirie in the control. 
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2.8.     Complexity, Robustness, Self-Organization, Swarms, and Sys- 
tem Thermodynamics 

Due to technological advances in sensing, actuation, communication, and computation 

over the last several years, a considerable research effort has been devoted to the control of 

networks and control over networks. Network systems involve distributed decision-making 

for coordination of dynamic agents involving information flow enabling enhanced operational 

effectiveness via cooperative control in autonomous systems. These dynamical network sys- 

tems cover a very broad spectrum of applications including cooperative control of unmanned 

air vehicles (UAV's) and autonomous underwater vehicles (AUV's) for combat, surveillance, 

and reconnaissance; distributed reconfigurable sensor networks for managing power levels of 

wireless networks; air and ground transportation systems for air traffic control and payload 

transport and traffic management; swarms of air and space vehicle formations for command 

and control between heterogeneous air and space vehicles; and congestion control in com- 

munication networks for routing the flow of information through a network. 

To enable the autonomous operation for these multiagent systems, the development of 

functional algorithms for agent coordination and control is needed. In particular, control 

algorithms need to address agent interactions, cooperative and non-cooperative control, task 

assignments, and resource allocations. To realize these tasks, appropriate sensory and cogni- 

tive capabilities such as adaptation, learning, decision-making, and agreement (or consensus) 

on the agent and multiagent levels are required. The common approach for addressing the 

autonomous operation of multiagent systems is using distributed control algorithms involv- 

ing neighbor-to-neighbor interaction between agents wherein agents update their information 

state based on the information states of the neighboring agents. Since most multiagent net- 

work systems are highly interconnected and mutually interdependent, both physically and 

through a multitude of information and communication networks, these systems are char- 

acterized by high-dirnensional, large-scale interconnected dynamical systems. To develop 

distributed methods for control and coordination of autonomous multiagent systems, many 

researchers have looked to autonomous swar-m systems appearing in nature for inspiration. 

Biology has shown that many species of animals such as insect swarms, ungulate flocks, 

fish schools, ant colonies, and bacterial colonies self-organize in nature. These biological 

aggregations give rise to remarkably complex global behaviors from simple local interactions 

between large numbers of relatively unintelligent agents without the need for centralized 

control. The spontaneous development (i.e., self-organization) of these autonomous biological 

systems and their spatio-temporal evolution to more complex states often appears without 

any external system interaction.   In other words, structure morphing into coherent groups 
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is internal to the system and results from local interactions among subsystem components 

that are independent of the physical nature of the individual components. These local 

interactions often comprise a simple set of rules that lead to remarkably complex global 

behaviors. Complexity here refers to the quality of a system wherein interacting subsystems 

self-organize to form hierarchical evolving structures exhibiting emergent system properties. 

Hence, a complex dynamical system is a system that is greater than the sum of its subsystems 

or parts. In addition, the spatially distributed sensing and actuation control architecture 

prevalent in such systems is inherently robust to individual subsystem (or agent) failures 

and unplanned behavior at the individual subsystem (or agent) level. 

The connection between the local subsystem interactions and the globally complex system 

behavior is often elusive. Complex dynamical systems involving self-organizing components 

forming spatio-ternporally evolving structures that exhibit a hierarchy of emergent system 

properties are not limited to biological aggregation systems. Such systems include, for ex- 

ample, nervous systems, immune systems, ecological systems, quantum particle systems, 

chemical reaction systems, economic systems, cellular systems, and galaxies, to cite but a 

few examples. These systems are known as dissipative systems [24] and consume energy and 

matter while maintaining their stable structure by dissipating entropy to the environment. 

For example, as in biology, in the physical universe billions of stars and galaxies interact to 

form self-organizing dissipative nonequilibrium structures. The fundamental common phe- 

nomenon among these systems are that they evolve in accordance to the laws of (nonequilib- 

rium) thermodynamics which are among the most firmly established laws of nature. System 

thermodynamics, in the sense of [10], involves open interconnected dynamical systems that 

exchange matter and energy with their environment in accordance with the first law (con- 

servation of energy) and the second law (nonconservation of entropy) of thermodynamics. 

Self-organization can spontaneously occur in such systems by invoking the two fundamental 

axioms of the science of heat. Namely, i) if the energies in the connected subsystems of 

an interconnected system are equal, then energy exchange between these subsystems is not 

possible, and ii) energy flows from more energetic subsystems to less energetic subsystems. 

These axioms establish the existence of a system entropy function as well as equipartition 

of energy [10] in system thermodynamics and information consensus [17, 19] in coopera- 

tive networks; an emergent behavior in thermodynamic systems as well as swarm systems. 

Hence, in complex interconnected dynamical systems, self-organization is not a property of 

the system's parts but rather emerges as a result of the nonlinear subsystem interactions. 

In light of the above discussion, engineering swarm systems necessitates the development 

of relatively simple autonomous agents that are inherently distributed, self-organized, and 

truly scalable. Scalability follows from the fact that such systems do not involve centralized 
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control and communication architectures. In addition, engineered swarming systems should 

be inherently robust to individual agent failures, unplanned task assignment changes, and 

environmental changes. Mathematical models for large-scale swarms can involve Lagrangian 

and Eulerian models. In a Lagrangian model, each agent is modeled as a particle governed 

by a difference or differential equation, whereas an Eulerian model describes the local energy 

or information flux for a distribution of swarms with an advection-diffusion (conservation) 

equation. The two formulations can be connected by a Fokker-Plank approximation relating 

jump distance distributions of individual agents to terms in the advection-diffusion equation. 

In many applications involving multiagent systems, groups of agents are required to 

agree on certain quantities of interest. In particular, it is important to develop informa- 

tion consensus protocols for networks of dynamic agents wherein a unique feature of the 

closed-loop dynamics under any control algorithm that achieves consensus is the existence 

of a continuum of equilibria representing a state of equipartitioning or consensus. Under 

such dynamics, the limiting consensus state achieved is not determined completely by the 

dynamics, but depends on the initial system state as well. For such systems possessing a 

continuum of equilibria, sernistability [9], and not asymptotic stability, is the relevant no- 

tion of stability. Sernistability is the property whereby every trajectory that starts in a 

neighborhood of a Lyapunov stable equilibrium converges to a (possibly different) Lyapunov 

stable equilibrium. From a practical viewpoint, it is not sufficient to only guarantee that a 

swarm converges to a state of consensus since steady state convergence is not sufficient to 

guarantee that small perturbations from the limiting state will lead to only small transient 

excursions from a state of consensus. It is also necessary to guarantee that the equilibrium 

states representing consensus are Lyapunov stable, and consequently, semistable. 

In this research [24], we develop distributed boundary control algorithms for addressing 

the consensus problem for an Eulerian swarm model. The proposed distributed boundary 

controller architectures are predicated on the recently developed notion of system thermo- 

dynamics [10] resulting in controller architectures involving the exchange of information 

b<'tween uniformly distributed swarms over an //-dimensional (not necessarily Euclidian) 

space that guarantee that the closed-loop system is consistent with basic thermodynamic 

principles. For our thermodynamically consistent model we further establish the existence 

of a unique continuously differentiable entropy functional for all equilibrium and nonequi- 

librium states of our system. Information consensus and sernistability are shown using the 

well-known Sobolev embedding theorems and the notion of generalized (or weak) solutions. 

Finally, since the closed-loop system is guaranteed to satisfy basic thermodynamic prin- 

ciples, robustness to individual agent failures and unplanned individual agent behavior is 

automatically guaranteed. 
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2.9.     Semistability, Differential Inclusions, and Consensus Proto- 
cols for Dynamical Networks with Switching Topology 

Modern complex dynamical systems are highly interconnected and mutually interdepen- 

dent, both physically and through a multitude of information and communication networks. 

Distributed decision-making for coordination of networks of dynamic agents involving infor- 

mation flow can be naturally captured by graph-theoretic notions. As noted in Section 2.8, 

these dynamical network systems cover a very broad spectrum of applications including coop- 

erative control of unmanned air vehicles (UAV's), autonomous underwater vehicles (AUV's), 

distributed sensor networks, air and ground transportation systems, swarms of air and space 

vehicle formations, and congestion control in communication networks, to cite but a few 

examples. Hence, it is not surprising that a considerable research effort has been devoted to 

control of networks and control over networks in recent years. 

Since communication links among multiagent systems are often unreliable due to mul- 

tipath effects and exogenous disturbances, the information exchange topologies in network 

systems are often dynamic. In particular, link failures or creations in network multiagent 

systems result in switchings of the communication topology. This is the case, for example, 

if information between agents is exchanged by means of line-of-sight sensors that experience 

periodic communication dropouts due to agent motion. Variation in network topology in- 

troduces control input discontinuities, which in turn give rise to discontinuous dynamical 

systems. In addition, the communication topology may be time-varying. In this case, the 

vector field defining the dynamical system is a discontinuous function of the state and time, 

and hence, system stability can be analyzed using nonsmooth Lyapunov theory involving 

concepts such as weak and strong stability notions, differential inclusions, and generalized 

gradients of locally Lipschitz functions and proximal subdifferentials of lower semicontinuous 

functions. 

In many applications involving multiagent systems, groups of agents are required to agree 

on certain quantities of interest. In particular, it is important to develop information con- 

sensus protocols for networks of dynamic agents wherein a unique feature of the closed-loop 

dynamics under any control algorithm that achieves consensus is the existence of a continuum 

of equilibria representing a state of equipartitioning or consensus. Under such dynamics, the 

limiting consensus state achieved is not determined completely by the dynamics, but depends 

on the initial system state as well. For such systems possessing a continuum of equilibria, 

semistability [9], and not asymptotic stability, is the relevant notion of stability. 

To address agreement problems in switching networks with time-dependent and state- 

dependent topologies, in this research [36, 74] we extend the theory of semistability to dis- 
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continuous time-invariant and time-varying dynamical systems. In particular, we develop 

necessary and sufficient conditions to guarantee weak and strong invariance of Fillipov solu- 

tions under the assumption that the discontinuous system vector field is uniformly bounded. 

Moreover, we present Lyapunov-based tests for strong semistability, weak semistability, as 

well as uniform semistability for autonomous and nonautonomous differential inclusions. 

2.10.     H2 Optimal Semistable Control for Linear Dynamical Sys- 
tems 

Dynamical network systems cover a very broad spectrum of applications including coop- 

erative control of unmanned air vehicles, autonomous underwater vehicles, distributed sensor 

networks, air and ground transportation systems, swarms of air and space vehicle formations, 

and congestion control in communication networks, to cite but a few examples. A unique 

feature of the closed-loop dynamics under any control algorithm in dynamical networks is 

the existence of a continuum of equilibria representing a desired state of convergence. Un- 

der such dynamics, the desired limiting state is not determined completely by the system 

dynamics, but depends on the initial system state as well [17,19]. 

The dependence of the limiting state on the initial state is not limited to dynamical 

network systems, it is also seen in the dynamics of compartmental systems which arise in 

chemical kinetics, and biomedical, environmental, economic, power, and thermodynamic 

systems. In all such systems possessing a continuum of equilibria, semistability, and not 

asymptotic stability, is the relevant notion of stability. 

In this research [28,35], we use linear matrix inequalities (LMIs) to develop 7i2 opti- 

mal semistable controllers for linear dynamical systems. Linear matrix inequalities provide 

a powerful design framework for linear control problems. Since LMIs lead to convex or 

quasiconvex optimization problems, they can be solved very efficiently using interior-point 

algorithms. Unlike the standard H2 optimal control problem, a complicating feature of the 

Ji-i optimal semistable stabilization problem is that the closed-loop Lyapunov equation guar- 

anteeing semistability can admit multiple solutions. An interesting feature of the proposed 

approach, however, is that a least squares solution over all possible semistabilizing solutions 

corresponds to the H2 optimal solution. It is shown that this least squares solution can be 

characterized by a linear matrix inequality minimization problem. 
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2.11.    Finite-Time Stabilization for Nonlinear Impulsive Dynami- 
cal Systems 

The mathematical descriptions of many hybrid dynamical systems can be characterized 

by impulsive differential equations [1]. Impulsive dynamical systems can be viewed as a sub- 

class of hybrid systems and consist of three elements—namely, a continuous-time differential 

equation, which governs the motion of the dynamical system between impulsive or resetting 

events; a difference equation, which governs the way the system states are instantaneously 

changed when a resetting event occurs; and a criterion for determining when the states of 

the system are to be reset. Since impulsive systems can involve impulses at variable times, 

they arc in general time-varying .systems, wherein the resetting events are both a function 

of time and the system's state. In the case where the resetting events are defined by a 

prescribed sequence of times which are independent of the system state, the equations are 

known as time-dependent differential equations [1]. Alternatively, in the case where the re- 

setting events are defined by a manifold in the state space that is independent of time, the 

equations are autonomous and are known as state-dependent differential equations [1]. 

Finite-time stability implies Lyapunov stability and convergence of system trajectories 

to an equilibrium state in finite-time, and hence, is a stronger notion than asymptotic sta- 

bility. For continuous-time dynamical systems, finite-time stability implies non-Lipschitzian 

dynamics [9] giving rise to non-uniqueness of solutions in reverse time. Uniqueness of so- 

lutions in forward time, however, can be preserved in the case of finite-time convergence. 

Finite-time convergence to a Lyapunov stable equilibrium for continuous-time systems, that 

is, finite-time stability, was rigorously studied in [9] using Holder continuous Lyapunov func- 

tions. 

Finite-time stability of impulsive dynamical systems, however, has not been studied in 

the literature. For impulsive dynamical systems, it may be possible to reset the system states 

to an equilibrium state, in which case finite-time convergence of the system trajectories can 

be achieved without the requirement for non-Lipschitzian dynamics. In addition, due to 

system resettings, impulsive dynamical systems may exhibit non-uniqueness of solutions in 

reverse time even when the continuous-time dynamics are Lipschitz continuous. 

In this research [15], we develop sufficient conditions for finite-time stability of nonlinear 

impulsive dynamical systems. Furthermore, we present stability results using vector Lya- 

punov functions wherein finite-time stability of the impulsive system is shown via finite-time 

stability of a hybrid comparison system. We use these results to further construct hybrid 

finite-time stabilizing controllers for impulsive dynamical systems. In addition, we construct 

decentralized finite-time stabilizers for large-scale impulsive dynamical systems. 
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2.12.     Neural Network Hybrid Adaptive Control for Nonlinear Un- 
certain Impulsive Dynamical Systems 

Modern complex engineering systems involve multiple modes of operation placing strin- 

gent demands on controller design and implementation of increasing complexity. Such sys- 

tems typically possess a multiechelon hierarchical hybrid control architecture characterized 

by continuous-time dynamics at the lower levels of the hierarchy and discrete-time dynamics 

at the higher levels of the hierarchy [1]. The lower-level units directly interact with the 

dynamical system to be controlled while the higher-level units receive information from the 

lower-level units as inputs and provide (possibly discrete) output commands which serve to 

coordinate and reconcile the (sometimes competing) actions of the lower-level units. The hi- 

erarchical controller organization reduces processor cost and controller complexity by break- 

ing up the processing task into relatively small pieces and decomposing the fast and slow 

control functions. Typically, the higher-level units perform logical checks that determine sys- 

tem mode operation, while the lower-level units execute continuous-variable commands for 

a given system mode of operation. The mathematical description of many of these systems 

can be characterized by impulsive differential equations [1]. 

The purpose of feedback control is to achieve desirable system performance in the face 

of system uncertainty. To this end, adaptive control along with robust control theory have 

been developed to address the problem of system uncertainty in control-system design. In 

contrast to fixed-gain robust controllers, which maintain specified constants within the feed- 

back control law to sustain robust performance, adaptive controllers directly or indirectly 

adjust feedback gains to maintain closed-loop stability and improve performance in the face 

of system uncertainties. Specifically, indirect adaptive controllers utilize parameter update 

laws to identify unknown system parameters and adjust feedback gains to account for system 

variation, while direct adaptive controllers directly adjust the controller gains in response 

to plant variations. The inherent nonlinearities and system uncertainties in hierarchical hy- 

brid control systems and the increasingly stringent performance requirements required for 

controlling such modern complex embedded systems necessitates the development of hybrid 

adaptive nonlinear control methodologies. 

Neural network-based adaptive control algorithms have been extensively developed in 

the literature, wherein Lyapunov-like functions are used to ensure that the neural network 

controllers can guarantee ultimate boundedness of the closed-loop system states rather than 

closed-loop asymptotic stability. Ultimate boundness ensures that the plant states converge 

to a neighbor-hood of the origin [9]. The reason why stability in the sense of Lyapunov is 

not guaranteed stems from the fact that the uncertainties in the system dynamics cannot be 
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perfectly captured by neural networks using the universal function approximation property 

and the residual approximation error is characterized via a norm bound over a given com- 

pact set. Ultimate boundedness guarantees, however, are often conservative since standard 

Lyapunov-like theorems that are typically used to show ultimate boundedness of the closed- 

loop hybrid system states provide only sufficient conditions, while neural network controllers 

may possibly achieve plant state convergence to an equilibrium point. 

In this research [16], we develop a neural hybrid adaptive control framework for a class 

of nonlinear uncertain impulsive dynamical systems which ensures state convergence to a 

Lyapunov stable equilibrium as well as boundedness of the neural network weighting gains. 

Specifically, the proposed framework is Lyapunov-based and guarantees partial asymptotic 

stability of the closed-loop hybrid system; that is, Lyapunov stability of the overall closed- 

loop states and convergence of the plant state. The neuroadaptive controllers are constructed 

without requiring explicit knowledge of the hybrid system dynamics other than the fact that 

the plant dynamics are continuously differentiable and that the approximation error of the 

unknown system nonlinearities lies in a small gain-type norm bounded conic sector over 

a compact set. Hence, the overall neuroadaptive control framework captures the residual 

approximation error inherent in linear parameterizations of system uncertainty via basis 

functions. Furthermore, the proposed neuroadaptive control architecture is modular in the 

sense that if a nominal linear design model is available, then the neuroadaptive controller 

can be augmented to the nominal design to account for system nonlinearities and system 

uncertainty. 

Finally, we emphasize that we do not impose any linear growth condition on the system 

resetting (discrete) dynamics. In the literature on classical (non-neural) adaptive control 

theory for discrete-time systems, it is typically assumed that the nonlinear system dynamics 

have the linear growth rate which is necessary in proving Lyapunov stability rather than 

practical stability (ultimate boundedness). Our novel characterization of the system uncer- 

tainties (i.e., the small gain-type bound on the norm of the modeling error) allows us to prove 

asymptotic stability without requiring a linear growth condition on the system dynamics. 

2.13.     Controller  Synthesis with Guaranteed  Closed-loop  Phase 
Constraints 

The ability to address gain and phase uncertainties is essential for maximizing achievable 

performance in controlling uncertain dynamical systems. The small gain theorem guarantees 

robust stability by requiring that the loop gain (including desired weighing functions for loop 

shaping) be less than unity at all frequencies.  The small gain theorem, however, does not 
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make use of phase information in guaranteeing stability. To some extent, phase information 

is accounted for by means of positivity theory. In this theory, a positive real plant and a 

strictly positive real uncertainty are both assumed to have phase less than 90° so that the 

loop transfer function has less than 180° of phase shift, hence guaranteeing robust stability 

in spite of gain uncertainty. Other notable results addressing phase information include 

concepts such as principal phases, multivariable phase margin, phase spread, phase envelope, 

phase matching, phase-sensitive structured singular value, and plant uncertainty templates. 

With the exception of positivity theory all of the aforementioned methods are restricted 

to frequency domain characterizations and are not amenable to state space formulations 

necessary for developing controller synthesis methods with guaranteed phase constraints. 

In this research [22], we present an analysis and synthesis approach for guaranteeing that 

the phase of a single-input, single-output closed-loop transfer function is contained in the 

interval [—a, a] for a given a > 0 at all frequencies. Specifically, we first derive a sufficient 

condition involving a frequency domain inequality for guaranteeing a given phase constraint. 

Next, we use the Kalman-Yakubovich-Popov (KYP) theorem to derive an equivalent time 

domain condition. In the case where a = |, we show that frequency and time domain 

sufficient conditions specialize to the positivity theorem. Furthermore, using linear matrix 

inequalities (LMIs), we develop a controller synthesis approach for guaranteeing a phase 

constraint on the closed-loop transfer function. Finally, we extend this synthesis approach 

to address mixed gain and phase constraints on the closed-loop transfer function. 

2.14.     Adaptive Control for Nonlinear Uncertain Systems with Ac- 
tuator Amplitude and Rate Saturation Constraints 

In light of the increasingly complex and highly uncertain nature of dynamical systems re- 

quiring controls, it is not surprising that reliable system models for many high performance 

engineering applications are unavailable. In the face of such high levels of system uncer- 

tainty, robust controllers may unnecessarily sacrifice system performance, whereas adaptive 

controllers are clearly appropriate since they can tolerate far greater system uncertainty 

levels to improve system performance. However, an implicit assumption inherent in most 

adaptive control frameworks is that the adaptive control law is implemented without any 

regard to actuator amplitude and rate saturation constraints. Of course, any electrome- 

chanical control actuation device is subject to amplitude and/or rate constraints leading to 

saturation nonlinearities enforcing limitations on control amplitudes and control rates. As 

a consequence, actuator nonlinearities arise frequently in practice and can severely degrade 

closed-loop system performance, and in some cases drive the system to instability.   These 
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effects are even more pronounced for adaptive controllers which continue to adapt when the 

feedback loop has been severed due to the presence of actuator saturation causing unstable 

controller modes to drift, which in turn leads to severe windup effects. 

Many practical applications involve nonlinear dynamical systems with simultaneous con- 

trol amplitude and rate saturation. The presence of control rate saturation may further 

exacerbate the problem of control amplitude saturation. For example, in advanced tacti- 

cal fighter aircraft with high maneuverability requirements, pilot induced oscillations can 

cause actuator amplitude and rate saturation in the control surfaces, leading to catastrophic 

failures. 

In this research [26], we develop a direct adaptive control framework for adaptive tracking 

of multivariable nonlinear uncertain systems with amplitude and rate saturation constraints. 

In particular, we extend the Lyapunov-based direct adaptive control framework developed in 

[11] to guarantee asymptotic stability of the closed-loop tracking system; that is, asymptotic 

stability with respect to the closed-loop system states associated with the tracking error 

dynamics in the face of actuator amplitude and rate saturation constraints. Specifically, a 

reference (governor or supervisor) dynamical system is constructed to address tracking and 

regulation by deriving adaptive update laws that guarantee that the error system dynamics 

are asymptotically stable, and the adaptive controller gains are Lyapunov stable. In the 

case where the actuator amplitude and rate are limited, the adaptive control signal to the 

reference system is modified to effectively robustify the error dynamics to the saturation 

constraints, thus guaranteeing asymptotic stability of the error states. 

2.15.    A New Neuroadaptive Control Architecture for Nonlinear 
Uncertain Dynamical Systems 

One of the primary reasons for the large interest in neural networks is their capability 

to approximate a large class of continuous nonlinear maps from the collective action of very 

simple, autonomous processing units interconnected in simple ways. Neural networks have 

also attracted attention due to their inherently parallel and highly redundant processing 

architecture that makes it possible to develop parallel weight update laws. This parallelism 

makes it possible to effectively update a neural network on line. These properties make 

neural networks a viable paradigm for adaptive system identification and control of complex 

highly uncertain systems, and as a consequence the use of neural networks for identification 

and control has become an active area of research. 

The goal of adaptive and neuroadaptive control is to achieve system performance without 

excessive reliance on system models. Both controller approaches directly or indirectly adjust 
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feedback controller gains and improve system performance in the face of system uncertainty. 

Specifically, indirect adaptive and neuroadaptive controllers utilize parameter update laws 

to identify unknown system parameters and adjust feedback gains to account for system 

variation, while direct adaptive and neuroadaptive controllers adjust the controller gains in 

response to system variations. 

The fundamental difference between adaptive control and neuroadaptive control can be 

traced back to the modeling and treatment of the system uncertainties. In particular, adap- 

tive control is based on constant, linearly parameterized system uncertainty models of a 

known structure but unknown variation. This uncertainty characterization allows for the 

system nonlinearities to be parameterized by a finite linear combination of basis functions 

within a class of function approximators such as rational functions, spline functions, radial 

basis functions, sigmoidal functions, and wavelets. However, this linear parametrization of 

basis functions cannot, in general, exactly capture the unknown system parameters. In such 

a case, the uncertainty is expressed in terms of a neural network involving a parameterized 

nonlinearity. Hence, in contrast to adaptive control, neuroadaptive control is based on the 

universal function approximation property, wherein any continuous nonlinear system uncer- 

tainty can be approximated arbitrarily closely on a compact set using a neural network with 

appropriate weights . This difference in the modeling and treatment of the system uncertain- 

ties results in the ability of adaptive controllers to guarantee asymptotic closed-loop system 

stability versus ultimate boundness as is the case with neuroadaptive controllers [11]. 

To improve robustness and the speed of adaptation of adaptive and neuroadaptive con- 

trollers several controller architectures have been proposed in the literature. These include 

the a- and e-modification architectures used to keep the system parameter estimates from 

growing without bound in the face of system uncertainty [40]. In this research [40], a new 

neuroadaptive control architecture for nonlinear uncertain dynamical systems is developed. 

Specifically, the proposed framework involves a new and novel controller architecture involv- 

ing additional terms, or Q-rnodification terms, in the update laws that are constructed using 

a moving window of the integrated system uncertainty. The Q-modification terms can be 

used to identify the ideal neural network system weights which can be used in the adaptive 

law. In addition, these terms effectively suppress system uncertainty. 

Even though the proposed approach is reminiscent to the composite adaptive control 

framework, the Q-modification framework does not involve filtered versions of the control 

input and system state in the update laws. Rather, the update laws involve auxiliary terms 

predicated on an estimate of the unknown neural network weights which in turn are char- 

acterized by an auxiliary equation involving the integrated error dynamics over a moving 
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time interval. In this research [40], we consider vector uncertainty structures with both lin- 

ear and nonlinear parameterizations. In addition, state and output feedback controllers are 

developed. Finally, to illustrate the efficacy of the proposed approach we apply our results 

to an aircraft model with wing rock dynamics as well as a spacecraft model involving an 

unknown moment of inertia matrix and compare our results with standard neuroadaptive 

control methods. 

2.16.     Tii Suboptimal Estimation and Control for Nonnegative Dy- 
namical Systems 

Nonnegative dynamical systems involve dynamic states whose values are nonnegative. 

A subclass of nonnegative dynamical systems are compartmental systems. Compartmental 

systems involve dynamical models that are characterized by conservation laws (e.g., mass, 

energy, fluid, etc.) capturing the exchange of material between coupled macroscopic sub- 

systems known as compartments. These models are widespread in biological, physiological, 

and ecological sciences as well as engineering systems such as queuing, large-scale, telecom- 

munications, transportation, power, and network systems, to cite but a few examples. Since 

nonnegative and compartmental systems have specialized structures, special control law 

strategies need to be developed that guarantee that the trajectories of the closed-loop plant 

system states remain in the nonnegative orthant of the state space for nonnegative initial 

conditions. In addition, for certain applications of nonnegative systems, such as active con- 

trol for clinical pharmacology, we require the control (source) inputs to be nonnegative. 

Even though nonnegative systems are often encountered in numerous application ar- 

eas, nonnegative orthant stabilizability and holdability has received little attention in the 

literature. In this research [27], we use linear matrix inequalities (LMIs) to develop Ti.2 

(sub)optimal estimators and controllers for nonnegative dynamical systems. Linear matrix 

inequalities provide a powerful design framework for linear control problems. Since LMIs 

lead to convex or quasiconvex optimization problems, they can be solved very efficiently 

using interior-point algorithms. An intersting feature of nonnegative orthant stabilizability 

is that it can be formulated as a solution to an LMI problem. However, Ti.2 optimal non- 

negative orthant stabilizability cannot, in general, be formulated as an LMI problem. In 

this research [27], we formulate a series of generalized eigenvalue problems subject to a set 

of LMI constraints for designing 7Y2 suboptimal estimators, static controllers, and dynamic 

controllers for nonnegative dynamical systems. 
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2.17.    Adaptive Disturbance Rejection Control for Compartmental 
Systems 

As discussed in Section 2.16, nonnegative and compartmental systems are essential in 

capturing the behavior of a wide range of dynamical systems involving dynamic states 

whose values are nonnegative. These systems are derived from mass and energy balance 

considerations and are comprised of homogeneous interconnected microscopic subsystems or 

compartments which exchange variable quantities of material via intercompartmental flow 

laws. Since biological and physiological systems have numerous input, state, and output 

properties related to conservation, dissipation, and transport of mass and energy, nonnega- 

tive and compartmental systems are remarkably effective in describing the phenomenological 

behavior of these dynamical systems. The range of applications of nonnegative and com- 

partmental systems is not limited to biological and medical systems. Their usage includes 

demographic, epidemic, ecological, economic, telecommunications, transportation, power, 

and large-scale systems. 

In a recent series by the Principal Investigator (see the references in [29]) a direct adap- 

tive control framework for linear and nonlinear nonnegative and compartmental systems was 

developed. This framework is Lyapunov-based and guarantees partial asymptotic set-point 

regulation, that is, asymptotic set point stability with respect to the closed-loop system 

states associated with the plant. In addition, the adaptive controllers guarantee that the 

physical system states remain in the nonnegative orthant of the state space. In this re- 

search [25], we develop a direct adaptive control framework for adaptive stabilization and 

disturbance rejection for compartmental dynamical systems with exogenous system distur- 

bances. The main challenge here is to construct nonlinear adaptive disturbance rejection 

controllers without requiring knowledge of the system dynamics or the system disturbances 

while guaranteeing that the physical system states remain in the nonnegative orthant of the 

state space. 

While such an adaptive control framework can have wide applicability in areas such as 

economics, telecommunications, and power systems, its use in the specific field of anesthetic 

pharmacology is particularly noteworthy. Specifically, during stress (such as hemorrhage) 

in an acute care environment, such as the operating room, perfusion pressure falls and hy- 

pertonic saline solutions are typically intravenously administered to regulate hemodynamic 

effects and avoid hemorrhagic shock. This exogenous disturbance drives the system pharma- 

cokinetics and pharmacodynamics and can be captured as a system disturbance. In addition, 

exogenous system disturbances can be used to capture unmodeled physiological and pharma- 

cological system dynamics. Although the proposed framework develops adaptive controllers 
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for general compartmental systems with exogenous disturbances, the specific focus of the 

research is on pharmacokinetic models with hemorrhage and hemodilution effects. 

2.18.    Neuroadaptive Output Feedback Control for Automated An- 
esthesia with Noisy EEG Measurements 

The dosing of most drugs is a process of empirical administration of a low dose with 

observation of the biological effect and subsequent adjustment of the dose in the hopes of 

achieving the desired effect. This is true of anesthetic drugs, just as it is of chronically 

administered medications (for example, anti-hypertensive agents). In the acute environment 

of the operating room and intensive care unit (ICU), this can result in inefficient, and possibly 

even dangerous, titration of drug to the desired effect. There has been a long interest in use of 

the electroencephalograph (EEG) as an objective, quantitative measure of consciousness that 

could be used as a performance variable for closed-loop control of anesthesia [29]. Processed 

electroencephalogram algorithms have been extensively investigated as monitors of the level 

of consciousness in patients requiring surgical anesthesia [29]. However, the EEG is a complex 

of multiple time series and in earlier work it was difficult to identify one single aspect of the 

EEG signal that correlated with the clinical signs of anesthesia. 

Subsequent to this early research there has been substantial progress in the development 

of processed EEG monitors that analyze the raw data to extract a single measure of the 

depth of anesthesia. The best known of these monitors is the bispectral or BIS monitor, 

which calculates a single composite EEG measure that is well correlated with the depth of 

anesthesia [29]. The BIS signal ranges from 0 (no cerebral electrical activity) to 100 (the 

normal awake state). Available evidence indicates that a BIS signal less than 55 is associated 

with lack of consciousness. While BIS monitoring has proven useful in the operating room 

environment, there have been inconsistencies reported and attempts to extend BIS monitor- 

ing for the evaluation of sedation outside of the operating room have been unsuccessful [29]. 

One of the key reasons for this is due to the fact that the signal-averaging algorithm within 

the BIS monitor ignores signal noise, and when there is excessive noise, the BIS monitor 

does not generate a signal. 

It is widely appreciated that BIS monitoring, or for that matter, any EEG monitoring, 

can be fraught with error because of the potential for outside interference to produce an 

unfavorable signal-to-noise ratio yielding spurious results. Nonphysiologic artifactual signals 

may be generated from sources external to the patient that include lights, electric cautery 

devices, ventilators, pacemakers, patient warming systems, and electrical noise related to 

the many different kinds of monitors normally found in an operating room or ICU. Physio- 
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logic movements such as eye movements, myogenic activity, perspiration, and ventilation can 

produce artifactual increases in the BIS score. In particular, it is apparent that electrornyo- 

graphic (EMG) activity can spuriously increase the BIS score [29]. The co-adininistration 

of neuromuscular blockade eliminates artifacts from muscle movement, which can be su- 

perimposed on the BIS score; and this undoubtedly contributes to the widespread use and 

value of the BIS device during surgery. However, to extend this technology outside of the 

operating room, or for that matter, to nonparalyzed patients in the operating room, further 

refinements are needed. In addition, if the BIS signal is to be used to quantify levels of 

consciousness for feedback control in general anesthesia, then the observation noise needs to 

be accounted for in the control system design process. 

The challenge to the use of the BIS signal for closed-loop control of anesthesia is that 

the relationships between drug dose and tissue concentration (pharmacokinetics) and be- 

tween tissue concentration and physiological effect (pharmacodynamics) is highly variable 

between individuals. In addition, observation noise in the BIS signal results in feedback 

measurement signals with high signal-to-noise ratios that need to be accounted for in the 

control algorithm. Adaptive feedback controllers seem particularly promising given this in- 

terpatient variability as well as BIS signal variation due to noise. In previous work, we 

have used nonnegative and compartmental dynamical systems theory to develop adaptive 

and neuroadaptive controllers for controlling the depth of anesthesia [49]. One of our initial 

efforts was the development of a direct adaptive control framework for uncertain nonlin- 

ear nonnegative and compartmental systems with nonnegative control inputs [49]. This 

framework is Lyapunov-based and guarantees partial asymptotic set-point regulation, that 

is, asymptotic setpoint stability with respect to part of the closed-loop system states asso- 

ciated with the physiological state variables. In addition, the adaptive controllers, which 

are constructed without requiring knowledge of the pharmacokinetic and pharmacodynamic 

parameters, provide a nonnegative control input for stabilization with respect to a given set- 

point in the nonnegative orthant. Subsequently, we also developed a neuroadaptive output 

feedback control framework for uncertain nonlinear nonnegative and compartmental systems 

with nonnegative control inputs [7]. This framework is also Lyapunov-based and guarantees 

ultimate boundedness of the error signals corresponding to the physical system states in the 

face of interpatient pharmacokinetic and pharmacodynamic variability. 

In a recent paper [49] we presented numerical and clinical results that compares and 

contrasts our adaptive control algorithm with our neural network adaptive control algorithm 

for controlling the depth of anesthesia in the operating theater during surgery. Specifically 

eleven clinical trials were performed with our adaptive control algorithm and seven clinical 

trials were performed with our neural network algorithm at the Northeast Georgia Medical 
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Center in Gainesville, Georgia. The proposed automated anesthesia controllers demonstrated 

excellent regulation of unconsciousness and allowed for a safe and effective administration 

of the anesthetic agent propofol. However, the adaptive and neuroadaptive controllers pre- 

sented in [49] did not account for measurement noise in the EEG signal. Clinical testing has 

clearly demonstrated the need for developing adaptive and neuroadaptive controllers that 

can address system measurement noise [49]. 

In this research [37], we extend the neuroadaptive controller framework developed in [7] 

to address measurement noise in the BIS signal. Specifically, we develop an output feedback 

neural network adaptive controller that operates over a tapped delay line (TDL) of available 

input and filtered output measurements. The neuroadaptive laws for the neural network 

weights are constructed using a linear observer for the nominal normal form error system 

dynamics. The proposed framework is Lyapunov-based and guarantees ultimate boundness 

of the error signals. In addition, the nonnegative neuroadaptive controller guarantees that 

the physiological system states remain in the nonnegative orthant of the state space. Fi- 

nally, we present numerical and clinical results for controlling the depth of anesthesia in the 

operating theater during surgery. The proposed automated anesthesia neuroadaptive con- 

troller demonstrates excellent regulation of unconsciousness and allows for a safe and effective 

administration of the anesthetic agent propofol in the face of noisy EEG measurements. 

2.19. Direct Adaptive Control for a Mutli-Compartmental Model 
of a Pressure-Limited Respirator and Lung Mechanics Sys- 
tem 

Mechanical ventilation of a patient with respiratory failure is one of the most common 

life-saving procedures performed in the intensive care unit. However, mechanical ventilation 

is physically uncomfortable due to the noxious interface between the ventilator and patient 

and mechanical ventilation evokes substantial anxiety on the part of the patient. This will 

often be manifested by the patient "fighting the ventilator." In this situation, there is 

dyssynchrony between the ventilatory effort of the patient and the ventilator. The patient 

will attempt to exhale at the time the ventilator is trying to expand the lungs or the patient 

will try to inhale when the ventilator is decreasing airway pressure to allow an exhalation. 

When patient-ventilator dyssynchrony occurs, at the very least there is excessive work of 

breathing with subsequent ventilatory muscle fatigue and in the worst case, elevated airway 

pressures that can actually rupture lung tissue. In this situation, it is a very common 

clinical practice to sedate patients to minimize "fighting the ventilator." Sedative-hypnotic 

agents act on the central nervous system to ameliorate the anxiety and discomfort associated 
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with mechanical ventilation and facilitate patient-ventilator synchrony. In this research, we 

developed an adaptive feedback controller for alleviating the dyssynchrony. 

In a recent paper [56], we extended the existing models for ventilation systems, to obtain 

a general mathematical model for the dynamic behavior of a multi-compartment respira- 

tory system in response to an arbitrary applied inspiratory pressure. Specifically, we used 

compartmental dynamical system theory to model and analyze the dynamics of a pressure- 

limited respirator and lung mechanics system, and showed that the periodic orbit generated 

by this system is globally asymptotically stable. Furthermore, we showed that the indi- 

vidual compartmental volumes, and hence the total lung volume, converge to steady-state 

end-inspiratory and end-expiratory values. In this research [73], first, we develop a model 

reference direct adaptive controller framework where the plant and reference model dynam- 

ics are switching and time-varying. Next, we apply the proposed adaptive framework to 

the multi-compartmental model of a pressure-limited respirator and lung mechanics system. 

Specifically, we develop an adaptive feedback controller that stabilizes a given limit cycle 

corresponding to a respiratory pattern identified by the clinician as a plausible breathing 

pattern. Finally, we provide simulations that quantify dyssynchrony in a controlled mechan- 

ical ventilator model. 
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Qing Hui, Ph. D. 

Several other students (K.Volyanskyy, J. J. Im, and H. Li) were involved in research 

projects that were closely related to this program. Although none of these students were 

financially supported by this program, their research did directly contribute to the overall 

research effort. Furthermore, one Ph. D. dissertation was completed under partial support 

of this program; namely 

Q.Hui, Nonlinear Dynamical Systems and Control for Large-Scale, Hybrid and Net- 
work Systems, August 2008. 

Dr. Hui is presently an Assistant Professor of Mechanical Engineering at Texas Tech. 
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4.    Interactions and Transitions 

4.1. Participation and Presentations 

The following conferences were attended over the past three years. 

American Control Conference, Minneapolis, MN, June 2006. 

IEEE Conference on Decision and Control, San Diego, CA, December 2006. 

American Control Conference, New York, NY, July 2007. 

IEEE Conference on Decision and Control, New Orleans, LA, December 2007. 

American Control Conference, Seattle, WA, June 2008. 

IEEE Conference on Decision and Control, Cancun, Mexico, December 2008. 

Furthermore, conference articles [44-74] were presented. 

4.2. Transitions 

Our work on adaptive and neuroadaptive control of drug delivery partially supported 

under this program has transitioned to clinical studies at the Northeast Georgia Medical 

Center in Gainesville, Georgia, under the direction of Dr. James M. Bailey (770-534-1312), 

director of cardiac anesthesia and consultant in critical care medicine. To date, we have 

performed over forty clinical trials. 

In critical care medicine it is current clinical practice to administer potent drugs that 

profoundly influence levels of consciousness, respiratory, and cardiovascular function by man- 

ual control based on the clinician's experience and intuition. Open-loop control by clinical 

personnel can be tedious, imprecise, time-consuming, and sometimes of poor quality, de- 

pending on the skills and judgment of the clinician. Military physicians may face the most 

demanding of critical care situations when dealing with the causalities of hostile action and 

in these situations, precise control of the dosing of drugs with potent cardiovascular and 

central nervous system effects is critical. 

It has been an aphorism among anesthesiologists since World War II that "thiopental (a 

common drug for the induction of anesthesia) killed more Americans at Pearl Harbor than 

the enemy." referring to the consequences of cardiovascular collapse induced by thiopental 

in trauma patients. Furthermore, military medicine faces unique challenges compared to the 

civilian sector. The necessity of triage has, sadly been a not rare event in times of war due to 

unexpected numbers of casualties overwhelming available resources and furthermore, health 

care providers may be among the casualties. Because of the possibility of demands on health 
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care providers that may exceed local resources, we believe that it is crucial to investigate 

the use of advanced control technology to extend the capabilities of the health care system 

to handle large numbers of casualties. Closed-loop control based on appropriate dynamical 

system models can improve the quality of drug administration in surgery and the intensive 

care unit, lessening the dependence of patient outcome on the skills of the clinician. 

This work was recently communicated to Colonel Leopoldo C. Cancio (210-916-3301) of 

the US Army Institute of Surgical Research in Fort Sam Houston, San Antonio, in order to 

provide improvements for combat casualty care in current and future battlefields. Transition 

discussions are ongoing. 
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